Position associated to Master thesis on Semiarid evapotranspiration modeling

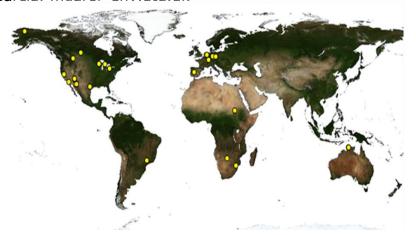
Background for the project: Limited water resources and growing needs of urban as well as agricultural water requirements in semi-arid sites require quantification of evapotranspiration with novel solutions. Most of the evapotranspiration models in semi-arid regions are very sensitive to the boundary conditions due to unexpected biophysical and ecohydrological changes.

Objective: Extensively test and modify a physically-based evapotranspiration modelling framework (STIC: Surface Temperature Initiated Closure) in the semi-arid landscapes of Australia, North America and Africa. Creating a global product from satellite data.

Tasks:

- combining thermal remote sensing with Penman-Monteith and Shuttleworth-Wallace model to constrain the stomatal and aerodynamic conductances,
- testing and validating the modified STIC scheme using both tower as well as satellite-based land surface temperature, radiative and meteorological forcings, and
- developing uncertainty framework in evapotranspiration estimates due to land surface temperature uncertainties.

Project type Paid MCs Thesis Project, location in Luxembourg


Department of supervisors

Associate Professor Monica Garcia, DTU Environment, mgarc@env.dtu.dk Co-supervisor: Kaniska Mallick, Luxemburg Insti. of Science and Technology, LIST

Contact person

Assistant Professor Monica Garcia, maarc@env.dtu.dk

See the job announcement here

